Ethers.js JavaScript Library¶
Introduction¶
The Ethers.js library provides a set of tools to interact with Ethereum nodes with JavaScript, similar to Web3.js. Tanssi-powered EVM networks have an Ethereum-like API available that is fully compatible with Ethereum-style JSON RPC invocations. Therefore, developers can leverage this compatibility and use the Ethers.js library to interact with a Tanssi EVM network node as if they were doing so on Ethereum. For more information on Ethers.js, check their documentation site.
In this guide, you'll learn how to use the Ethers.js library for your Tanssi EVM network. Next, to showcase the library in action, you'll use Ethers.js to send a transaction and deploy a contract on a Tanssi EVM network running in Tanssi's Dancebox TestNet. This guide can be adapted for your own Tanssi EVM network by simply changing the endpoint.
If you prefer video tutorials, you can follow along with the corresponding videos at the top of this page for Sending Transactions with Ethers.js and Deploying Contracts with Ethers.js.
Note
The examples in this guide are based on a MacOS or Ubuntu 20.04 environment. If you're using Windows, you'll need to adapt them accordingly.
Furthermore, please ensure that you have Node.js and a package manager (such as npm or yarn) installed. To learn how to install Node.js, please check their official documentation.
Also, make sure you've initialized a package.json
file for ES6 modules. You can initialize a default package.json
file using npm by running the following command npm init --yes
.
Checking Prerequisites¶
For the examples in this guide, you will need to have the following:
- An account with funds in the Tanssi EVM network you are testing with
Installing Ethers.js¶
For this guide, you'll need to install the Ethers.js library and the Solidity compiler. To install both NPM packages, you can run the following command:
npm install ethers solc@0.8.0
yarn add ethers solc@0.8.0
Setting up the Ethers Provider¶
Throughout this guide, you'll be creating a bunch of scripts that provide different functionality such as sending a transaction, deploying a contract, and interacting with a deployed contract. In most of these scripts you'll need to create an Ethers provider to interact with the network.
To create a provider, you can take the following steps:
- Import the
ethers
library - Define the
providerRPC
object, which can include the network configurations for any of the networks you want to send a transaction on. You'll include thename
,rpc
, andchainId
for each network - Create the
provider
using theethers.JsonRpcProvider
method
// 1. Import ethers
import { ethers } from "ethers";
// 2. Define network configurations
const providerRPC = {
evmNetwork: {
name: 'dancebox-evm-network',
// Insert your RPC URL here
rpc: 'https://fraa-dancebox-3001-rpc.a.dancebox.tanssi.network',
chainId: 5678, // 0x162E in hex,
},
};
// 3. Create ethers provider
const provider = new ethers.JsonRpcProvider(
providerRPC.evmNetwork.rpc,
{
chainId: providerRPC.evmNetwork.chainId,
name: providerRPC.evmNetwork.name,
}
);
Save this code snippet as you'll need it for the scripts that are used in the following sections.
Send a Transaction¶
During this section, you'll be creating a couple of scripts. The first one will be to check the balances of your accounts before trying to send a transaction. The second script will actually send the transaction.
You can also use the balance script to check the account balances after the transaction has been sent.
Check Balances Script¶
You'll only need one file to check the balances of both addresses before and after the transaction is sent. To get started, you can create a balances.js
file by running:
touch balances.js
Next, you will create the script for this file and complete the following steps:
- Set up the Ethers provider
- Define the
addressFrom
andaddressTo
variables - Create the asynchronous
balances
function which wraps theprovider.getBalance
method - Use the
provider.getBalance
function to fetch the balances for theaddressFrom
andaddressTo
addresses. You can also leverage theethers.formatEther
function to transform the balance into a more readable number in ETH - Lastly, run the
balances
function
// 1. Add the Ethers provider logic here:
// {...}
// 2. Create address variables
const addressFrom = 'INSERT_ADDRESS_FROM';
const addressTo = 'INSERT_ADDRESS_TO';
// 3. Create balances function
const balances = async () => {
// 4. Fetch balances
const balanceFrom = ethers.formatEther(await provider.getBalance(addressFrom));
const balanceTo = ethers.formatEther(await provider.getBalance(addressTo));
console.log(`The balance of ${addressFrom} is: ${balanceFrom} TANGO`);
console.log(`The balance of ${addressTo} is: ${balanceTo} TANGO`);
};
// 5. Call the balances function
balances();
View the complete script
// Import ethers
import { ethers } from 'ethers';
// Define network configurations
const providerRPC = {
evmNetwork: {
name: 'dancebox-evm-network',
rpc: 'https://fraa-dancebox-3001-rpc.a.dancebox.tanssi.network', // Insert your RPC URL here
chainId: 5678, // 0x162E in hex,
},
};
// Create ethers provider
const provider = new ethers.JsonRpcProvider(providerRPC.evmNetwork.rpc, {
chainId: providerRPC.evmNetwork.chainId,
name: providerRPC.evmNetwork.name,
});
// Define addresses
const addressFrom = 'INSERT_ADDRESS_FROM';
const addressTo = 'INSERT_ADDRESS_TO';
// Create balances function
const balances = async () => {
// Fetch balances
const balanceFrom = ethers.formatEther(
await provider.getBalance(addressFrom)
);
const balanceTo = ethers.formatEther(await provider.getBalance(addressTo));
console.log(`The balance of ${addressFrom} is: ${balanceFrom} TANGO`);
console.log(`The balance of ${addressTo} is: ${balanceTo} TANGO`);
};
// Call the balances function
balances();
To run the script and fetch the account balances, you can run the following command:
node balances.js
If successful, the balances for the origin and receiving address will be displayed in your terminal in TANGO.
The balance of 0x8841701Dba3639B254D9CEe712E49D188A1e941e is: 1.0 TANGO
Send Transaction Script¶
You'll only need one file for executing a transaction between accounts. For this example, you'll be transferring 1 TANGO token from an origin address (from which you hold the private key) to another address. To get started, you can create a transaction.js
file by running:
touch transaction.js
Next, you will create the script for this file and complete the following steps:
- Set up the Ethers provider
- Define the
privateKey
and theaddressTo
variables. The private key is required to create a wallet instance. Note: This is for example purposes only. Never store your private keys in a JavaScript file - Create a wallet using the
privateKey
andprovider
from the previous steps. The wallet instance is used to sign transactions - Create the asynchronous
send
function which wraps the transaction object and thewallet.sendTransaction
method - Create the transaction object which only requires the recipient's address and the amount to send. Note that
ethers.parseEther
can be used, which handles the necessary unit conversions from Ether to Wei - similar to usingethers.parseUnits(value, 'ether')
- Send the transaction using the
wallet.sendTransaction
method and then useawait
to wait until the transaction is processed and the transaction receipt is returned - Lastly, run the
send
function
// 1. Add the Ethers provider logic here:
// {...}
// 2. Create account variables
const accountFrom = {
privateKey: 'INSERT_YOUR_PRIVATE_KEY',
};
const addressTo = 'INSERT_ADDRESS_TO';
// 3. Create wallet
let wallet = new ethers.Wallet(accountFrom.privateKey, provider);
// 4. Create send function
const send = async () => {
console.log(`Attempting to send transaction from ${wallet.address} to ${addressTo}`);
// 5. Create tx object
const tx = {
to: addressTo,
value: ethers.parseEther('1'),
};
// 6. Sign and send tx - wait for receipt
const createReceipt = await wallet.sendTransaction(tx);
await createReceipt.wait();
console.log(`Transaction successful with hash: ${createReceipt.hash}`);
};
// 7. Call the send function
send();
View the complete script
// Import ethers
import { ethers } from 'ethers';
// Define network configurations
const providerRPC = {
evmNetwork: {
name: 'dancebox-evm-network',
rpc: 'https://fraa-dancebox-3001-rpc.a.dancebox.tanssi.network', // Insert your RPC URL here
chainId: 5678, // 0x162E in hex,
},
};
// Create ethers provider
const provider = new ethers.JsonRpcProvider(providerRPC.evmNetwork.rpc, {
chainId: providerRPC.evmNetwork.chainId,
name: providerRPC.evmNetwork.name,
});
// Define accounts and wallet
const accountFrom = {
privateKey: 'INSERT_YOUR_PRIVATE_KEY',
};
const addressTo = 'INSERT_ADDRESS_TO';
const wallet = new ethers.Wallet(accountFrom.privateKey, provider);
// Create send function
const send = async () => {
console.log(
`Attempting to send transaction from ${wallet.address} to ${addressTo}`
);
// Create transaction
const tx = {
to: addressTo,
value: ethers.parseEther('1'),
};
// Send transaction and get hash
const createReceipt = await wallet.sendTransaction(tx);
await createReceipt.wait();
console.log(`Transaction successful with hash: ${createReceipt.hash}`);
};
// Call the send function
send();
To run the script, you can run the following command in your terminal:
node transaction.js
If the transaction was succesful, in your terminal you'll see the transaction hash has been printed out.
You can also use the balances.js
script to check that the balances for the origin and receiving accounts have changed. The entire workflow would look like this:
Transaction successful with hash: 0x29d87c00704b949cb4cc04fdc6c98d53b3c0ec4fb3ffe0c52864a73 b586f563c node balances.js The balance of 0x44236223aB4291b93EEd10E4B511B37a398DEE55 is: 18.999958 TANGO
The balance of 0x8841701Dba3639B254D9CEe712E49D188A1e941e is: 2.0 TANGO
Deploy a Contract¶
The contract you'll be compiling and deploying in the next couple of sections is a simple incrementer contract, arbitrarily named Incrementer.sol
. You can get started by creating a file for the contract:
touch Incrementer.sol
Next, you can add the Solidity code to the file:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
contract Incrementer {
uint256 public number;
constructor(uint256 _initialNumber) {
number = _initialNumber;
}
function increment(uint256 _value) public {
number = number + _value;
}
function reset() public {
number = 0;
}
}
The constructor
function, which runs when the contract is deployed, sets the initial value of the number variable stored on-chain (default is 0). The increment
function adds the _value
provided to the current number, but a transaction needs to be sent, which modifies the stored data. Lastly, the reset
function resets the stored value to zero.
Note
This contract is a simple example for illustration purposes only.
Compile Contract Script¶
In this section, you'll create a script that uses the Solidity compiler to output the bytecode and interface (ABI) for the Incrementer.sol
contract. To get started, you can create a compile.js
file by running:
touch compile.js
Next, you will create the script for this file and complete the following steps:
- Import the
fs
andsolc
packages - Using the
fs.readFileSync
function, you'll read and save the file contents ofIncrementer.sol
tosource
- Build the
input
object for the Solidity compiler by specifying thelanguage
,sources
, andsettings
to be used - Using the
input
object, you can compile the contract usingsolc.compile
- Extract the compiled contract file and export it to be used in the deployment script
// 1. Import packages
import fs from 'fs';
import solc from 'solc';
// 2. Get path and load contract
const source = fs.readFileSync('Incrementer.sol', 'utf8');
// 3. Create input object
const input = {
language: 'Solidity',
sources: {
'Incrementer.sol': {
content: source,
},
},
settings: {
outputSelection: {
'*': {
'*': ['*'],
},
},
},
};
// 4. Compile the contract
const tempFile = JSON.parse(solc.compile(JSON.stringify(input)));
const contractFile = tempFile.contracts['Incrementer.sol']['Incrementer'];
// 5. Export contract data
export default contractFile;
Deploy Contract Script¶
With the script for compiling the Incrementer.sol
contract in place, you can then use the results to send a signed transaction that deploys it. To do so, you can create a file for the deployment script called deploy.js
:
touch deploy.js
Next, you will create the script for this file and complete the following steps:
- Import the contract file from
compile.js
- Set up the Ethers provider
- Define the
privateKey
for the origin account. The private key is required to create a wallet instance. Note: This is for example purposes only. Never store your private keys in a JavaScript file - Save the
bytecode
andabi
for the compiled contract - Create a wallet using the
privateKey
andprovider
from the previous steps. The wallet instance is used to sign transactions - Create a contract instance with signer using the
ethers.ContractFactory
function, providing theabi
,bytecode
, andwallet
as parameters - Create the asynchronous
deploy
function that will be used to deploy the contract - Within the
deploy
function, use theincrementer
contract instance to calldeploy
and pass in the initial value. For this example, you can set the initial value to5
. This will send the transaction for contract deployment. To wait for a transaction receipt you can use thedeployed
method of the contract deployment transaction - Lastly, run the
deploy
function
// 1. Import the contract file
import contractFile from './compile';
// 2. Add the Ethers provider logic here:
// {...}
// 3. Create account variables
const accountFrom = {
privateKey: 'INSERT_YOUR_PRIVATE_KEY',
};
// 4. Save the bytecode and ABI
const bytecode = contractFile.evm.bytecode.object;
const abi = contractFile.abi;
// 5. Create wallet
let wallet = new ethers.Wallet(accountFrom.privateKey, provider);
// 6. Create contract instance with signer
const incrementer = new ethers.ContractFactory(abi, bytecode, wallet);
// 7. Create deploy function
const deploy = async () => {
console.log(`Attempting to deploy from account: ${wallet.address}`);
// 8. Send tx (initial value set to 5) and wait for receipt
const contract = await incrementer.deploy(5);
const txReceipt = await contract.deploymentTransaction().wait();
console.log(`Contract deployed at address: ${txReceipt.contractAddress}`);
};
// 9. Call the deploy function
deploy();
View the complete script
// Import ethers and compile
import { ethers } from 'ethers';
import contractFile from './compile.js';
// Define network configurations
const providerRPC = {
evmNetwork: {
name: 'dancebox-evm-network',
rpc: 'https://fraa-dancebox-3001-rpc.a.dancebox.tanssi.network', // Insert your RPC URL here
chainId: 5678, // 0x162E in hex,
},
};
// Create ethers provider
const provider = new ethers.JsonRpcProvider(providerRPC.evmNetwork.rpc, {
chainId: providerRPC.evmNetwork.chainId,
name: providerRPC.evmNetwork.name,
});
// Define accounts and wallet
const accountFrom = {
privateKey: 'INSERT_YOUR_PRIVATE_KEY',
};
let wallet = new ethers.Wallet(accountFrom.privateKey, provider);
// Load contract info
const bytecode = contractFile.evm.bytecode.object;
const abi = contractFile.abi;
// Create contract instance with signer
const incrementer = new ethers.ContractFactory(abi, bytecode, wallet);
// Create deploy function
const deploy = async () => {
console.log(`Attempting to deploy from account: ${wallet.address}`);
// Send tx (initial value set to 5) and wait for receipt
const contract = await incrementer.deploy(5);
const txReceipt = await contract.deploymentTransaction().wait();
console.log(`Contract deployed at address: ${txReceipt.contractAddress}`);
};
// Call the deploy function
deploy();
To run the script, you can enter the following command into your terminal:
node deploy.js
If successful, the contract's address will be displayed in the terminal.
Contract deployed at address: 0x2EF0C649C08D55637dec9fCcebCFeD27F2F2a5F2
Read Contract Data (Call Methods)¶
Call methods are the type of interaction that don't modify the contract's storage (change variables), meaning no transaction needs to be sent. They simply read various storage variables of the deployed contract.
To get started, you can create a file and name it get.js
:
touch get.js
Then you can take the following steps to create the script:
- Import the
contractFile
from thecompile.js
file, where the ABI of the contract is - Set up the Ethers provider
- Create the
contractAddress
variable using the address of the deployed contract - Create an instance of the contract using the
ethers.Contract
function and passing in thecontractAddress
,abi
, andprovider
- Create the asynchronous
get
function - Use the contract instance to call one of the contract's methods and pass in any inputs if necessary. For this example, you will call the
number
method which doesn't require any inputs. You can useawait
which will return the value requested once the request promise resolves - Lastly, call the
get
function
// 1. Import the ABI
import contractFile from './compile';
// 2. Add the Ethers provider logic here:
// {...}
// 3. Contract address variable
const contractAddress = 'INSERT_CONTRACT_ADDRESS';
// 4. Create contract instance
const incrementer = new ethers.Contract(
contractAddress,
contractFile.abi,
provider
);
// 5. Create get function
const get = async () => {
console.log(`Making a call to contract at address: ${contractAddress}`);
// 6. Call contract
const data = await incrementer.number();
console.log(`The current number stored is: ${data}`);
};
// 7. Call get function
get();
View the complete script
// Import ethers and compile
import { ethers } from 'ethers';
import contractFile from './compile.js';
// Define network configurations
const providerRPC = {
evmNetwork: {
name: 'dancebox-evm-network',
rpc: 'https://fraa-dancebox-3001-rpc.a.dancebox.tanssi.network', // Insert your RPC URL here
chainId: 5678, // 0x162E in hex,
},
};
// Create ethers provider
const provider = new ethers.JsonRpcProvider(providerRPC.evmNetwork.rpc, {
chainId: providerRPC.evmNetwork.chainId,
name: providerRPC.evmNetwork.name,
});
// Contract address variable
const contractAddress = 'INSERT_CONTRACT_ADDRESS';
// Create contract instance
const incrementer = new ethers.Contract(
contractAddress,
contractFile.abi,
provider
);
// Create get function
const get = async () => {
console.log(`Making a call to contract at address: ${contractAddress}`);
// Call contract
const data = await incrementer.number();
console.log(`The current number stored is: ${data}`);
};
// Call get function
get();
To run the script, you can enter the following command in your terminal:
node get.js
If successful, the value will be displayed in the terminal.
The current number stored is: 5
Interact with Contract (Send Methods)¶
Send methods are the type of interaction that modify the contract's storage (change variables), meaning a transaction needs to be signed and sent. In this section, you'll create two scripts: one to increment and one to reset the incrementer. To get started, you can create a file for each script and name them increment.js
and reset.js
:
touch increment.js reset.js
Open the increment.js
file and take the following steps to create the script:
- Import the
contractFile
from thecompile.js
file, where the ABI of the contract is - Set up the Ethers provider
- Define the
privateKey
for the origin account, thecontractAddress
of the deployed contract, and the_value
to increment by. The private key is required to create a wallet instance. Note: This is for example purposes only. Never store your private keys in a JavaScript file - Create a wallet using the
privateKey
andprovider
from the previous steps. The wallet instance is used to sign transactions - Create an instance of the contract using the
ethers.Contract
function and passing in thecontractAddress
,abi
, andprovider
- Create the asynchronous
increment
function - Use the contract instance to call one of the contract's methods and pass in any inputs if necessary. For this example, you will call the
increment
method which requires the value to increment by as an input. You can useawait
which will return the value requested once the request promise resolves - Lastly, call the
increment
function
// 1. Import the contract ABI
import contractFile from './compile';
// 2. Add the Ethers provider logic here:
// {...}
// 3. Create variables
const accountFrom = {
privateKey: 'INSERT_YOUR_PRIVATE_KEY',
};
const contractAddress = 'INSERT_CONTRACT_ADDRESS';
const _value = 3;
// 4. Create wallet
let wallet = new ethers.Wallet(accountFrom.privateKey, provider);
// 5. Create contract instance with signer
const incrementer = new ethers.Contract(
contractAddress,
contractFile.abi,
wallet
);
// 6. Create increment function
const increment = async () => {
console.log(
`Calling the increment by ${_value} function in contract at address: ${contractAddress}`
);
// 7. Sign and send tx and wait for receipt
const createReceipt = await incrementer.increment(_value);
await createReceipt.wait();
console.log(`Tx successful with hash: ${createReceipt.hash}`);
};
// 8. Call the increment function
increment();
View the complete script
// Import ethers and compile
import { ethers } from 'ethers';
import contractFile from './compile.js';
// Define network configurations
const providerRPC = {
evmNetwork: {
name: 'dancebox-evm-network',
rpc: 'https://fraa-dancebox-3001-rpc.a.dancebox.tanssi.network', // Insert your RPC URL here
chainId: 5678, // 0x162E in hex,
},
};
// Create ethers provider
const provider = new ethers.JsonRpcProvider(providerRPC.evmNetwork.rpc, {
chainId: providerRPC.evmNetwork.chainId,
name: providerRPC.evmNetwork.name,
});
// Create variables
const accountFrom = {
privateKey: 'INSERT_YOUR_PRIVATE_KEY',
};
const contractAddress = 'INSERT_CONTRACT_ADDRESS';
const _value = 3;
// Create wallet
let wallet = new ethers.Wallet(accountFrom.privateKey, provider);
// Create contract instance with signer
const incrementer = new ethers.Contract(
contractAddress,
contractFile.abi,
wallet
);
// Create increment function
const increment = async () => {
console.log(
`Calling the increment by ${_value} function in contract at address: ${contractAddress}`
);
// Sign and send tx and wait for receipt
const createReceipt = await incrementer.increment(_value);
await createReceipt.wait();
console.log(`Tx successful with hash: ${createReceipt.hash}`);
};
// Call the increment function
increment();
To run the script, you can enter the following command in your terminal:
node increment.js
If successful, the transaction hash will be displayed in the terminal. You can use the get.js
script alongside the increment.js
script to make sure that value is changing as expected:
Tx successful with hash: 0x8aa7ccb4613ac92713bcc6ff064f1b0c978e24b3f6acb6d6bfa730a10af522bb node get.js Making a call to contract at address: 0x2EF0C649C08D55637dec9fCcebCFeD27F2F2a5F2
The current number stored is: 8
Next you can open the reset.js
file and take the following steps to create the script:
- Import the
contractFile
from thecompile.js
file, where the ABI of the contract is - Set up the Ethers provider
- Define the
privateKey
for the origin account and thecontractAddress
of the deployed contract. The private key is required to create a wallet instance. Note: This is for example purposes only. Never store your private keys in a JavaScript file - Create a wallet using the
privateKey
andprovider
from the previous steps. The wallet instance is used to sign transactions - Create an instance of the contract using the
ethers.Contract
function and passing in thecontractAddress
,abi
, andprovider
- Create the asynchronous
reset
function - Use the contract instance to call one of the contract's methods and pass in any inputs if necessary. For this example, you will call the
reset
method which doesn't require any inputs. You can useawait
which will return the value requested once the request promise resolves - Lastly, call the
reset
function
// 1. Import the contract ABI
import contractFile from './compile';
// 2. Add the Ethers provider logic here:
// {...}
// 3. Create variables
const accountFrom = {
privateKey: 'INSERT_YOUR_PRIVATE_KEY',
};
const contractAddress = 'INSERT_CONTRACT_ADDRESS';
// 4. Create wallet
let wallet = new ethers.Wallet(accountFrom.privateKey, provider);
// 5. Create contract instance with signer
const incrementer = new ethers.Contract(
contractAddress,
contractFile.abi,
wallet
);
// 6. Create reset function
const reset = async () => {
console.log(`Calling the reset function in contract at address: ${contractAddress}`);
// 7. sign and send tx and wait for receipt
const createReceipt = await incrementer.reset();
await createReceipt.wait();
console.log(`Tx successful with hash: ${createReceipt.hash}`);
};
// 8. Call the reset function
reset();
View the complete script
// Import ethers and compile
import { ethers } from 'ethers';
import contractFile from './compile.js';
// Define network configurations
const providerRPC = {
evmNetwork: {
name: 'dancebox-evm-network',
rpc: 'https://fraa-dancebox-3001-rpc.a.dancebox.tanssi.network', // Insert your RPC URL here
chainId: 5678, // 0x162E in hex,
},
};
// Create ethers provider
const provider = new ethers.JsonRpcProvider(providerRPC.evmNetwork.rpc, {
chainId: providerRPC.evmNetwork.chainId,
name: providerRPC.evmNetwork.name,
});
// Create variables
const accountFrom = {
privateKey: 'INSERT_YOUR_PRIVATE_KEY',
};
const contractAddress = 'INSERT_CONTRACT_ADDRESS';
// Create wallet
let wallet = new ethers.Wallet(accountFrom.privateKey, provider);
// Create contract instance with signer
const incrementer = new ethers.Contract(
contractAddress,
contractFile.abi,
wallet
);
// Create reset function
const reset = async () => {
console.log(
`Calling the reset function in contract at address: ${contractAddress}`
);
// Sign and send tx and wait for receipt
const createReceipt = await incrementer.reset();
await createReceipt.wait();
console.log(`Tx successful with hash: ${createReceipt.hash}`);
};
// Call the reset function
reset();
To run the script, you can enter the following command in your terminal:
node reset.js
If successful, the transaction hash will be displayed in the terminal. You can use the get.js
script alongside the reset.js
script to make sure that value is changing as expected:
Tx successful with hash: 0xb689da50a43e98b5a83ff64757afbf100be12e2db6ff4d0504168f262cc08fb0 node get.js Making a call to contract at address: 0x2EF0C649C08D55637dec9fCcebCFeD27F2F2a5F2
The current number stored is: 0
| Created: August 29, 2023